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Abstract 
jEPlus is an open source tool originally developed for managing complex parametric 
simulations using EnergyPlus (E+). If coupled with optimisation algorithms such as 
Evolutionary Algorithms (EAs), it provides a convenient and highly efficient way to 
perform optimisation for building design and operation. This paper discusses the 
general processes of optimisation, and how jEPlus being used for simplifying the 
tasks of setting up optimisation for building simulation users. An optimisation problem 
with a solution space of more than one million design options is presented as a case 
study. EAs is coupled with jEPlus using the methods described in the paper, to 
perform both multi-objective and single objective optimisation. It is found that the 
multi-objective approach can produce better results than single objective methods. 
 
Keywords jEPlus, EnergyPlus, Building Optimisation, Evolutionary Algorithms 
 
1.0 Introduction 
Building design optimisation is an important and growing research area, which has 
attracted attentions from more and more practitioners, too. In recent years, many 
optimisation exercises related to building design have been reported by researchers 
[1][2][3][4][5], most of who developed own tools that have not been made available to 
the community. One exception is GenOpt [1], a generic optimisation tool 
incorporating a range of algorithms and the ability to work with many building 
simulation programs. 
 
Despite that general-purpose optimisation tools such as GenOpt have been available 
more than a decade, many researchers learned optimisation by developing their own 
algorithms. One of the main reasons is that optimisation problems involved in 
building design and operation vary vastly in nature, whereas there is not a ‘generic’ 
algorithm that is suitable for all problem types. To solve a problem effectively, 
researchers have to master the optimisation techniques, often by the means of 
implementing their own algorithms. 
 
Learning optimisation techniques and developing algorithms is an enjoyable and 
rewarding job, especially nowadays it no longer requires writing code from scratch. 
Instead, readymade building blocks of algorithms can be customized and fitted 
together within a solver framework; the performance of the optimisation system can 
then be tuned by adjusting a handful of parameters. Involved in this process, 
however, are a few unavoidable tasks that are both tedious and error-prone. 
Coupling the optimisation system with a building simulation program is one of such 
tasks. A new tool is needed to fill in exactly this gap. 
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Coupling of an optimisation system with a building simulation program involves three 
steps: 1) prepare a simulation job of a solution to be evaluated; 2) start the simulation 
program with the job and wait until it finishes; and 3) collect results or error reports 
generated by the simulation program. Since optimisation always involves evaluation 
of a number of alternative solutions, being able to run simulations in parallel will be 
useful for accelerating optimisation process with modern computer hardware. In this 
paper, we describe the use of jEPlus [6] for optimisation and its advantages.   
 
2.0 Optimisation problems 
In general, an optimisation problem can be expressed in the following form: 
 
Minimise:  � = �(�) 
Subject to: �(�) ≤ 	 
 
(�) = 	 
Where: � = [�, ��, … , ��] is the vector of problem variables; 
 �(�) = [�(�), ��(�), … , ��(�)] is the vector of objective functions; 
 �(�) = [�(�), ��(�), … , ��(�)] is the vector of inequality constraints; 
 
(�) = [ℎ(�), ℎ�(�), … , ℎ�(�)] is the vector of equality constraints. 

 
Note that, mathematically, objectives, equality and inequality constraints are 
interchangeable. For example, an equality constraint ℎ(�) = 0 can be expressed as 
an inequality constraint by introducing a small tolerance �, i.e. �(�) = |ℎ(�)| − � ≤ 0; 
or a constraint can be satisfied by minimising it as an objective function. Multiple 
constraints can be combined into one, e.g. ��(�) = ∑�(�) ≤ 0; so are the objective 
functions.  
 
In real world applications, however, how to define an optimisation problem depends 
on the nature of the problem it tries to solve. For optimisation problems in building 
design and operation, objectives and constraints are often determined by user’s 
priorities. For example, a building design can be optimised to minimize energy 
consumption (objective) while maintaining required comfort level (constraint); or it 
can be optimised to maximize comfort level (objective) within a limited budget 
(constraint), or indeed to minimise energy consumption, carbon emission, life cycle 
cost, discomfort, and more (objectives) all at once. It seems users should have 
complete freedom in choosing the form of the optimisation problem to meet their 
requirement. Unfortunately, their options are limited by the optimisation algorithms 
they are going to use. 
 
Over the years, hundreds of optimisation algorithms have been developed. Broadly, 
they belong to three groups: gradient-based methods, pattern search and other non-
population-based direct search methods, and population-based (and mostly, 
stochastic) methods. Only the last group of algorithms are capable of handling multi-
objective and/or multi-constraint (often-called multi-criteria) problems. Other methods 
require objectives and constraints being combined into one criterion. In the case 
study of this paper, we will explain the difference between single and multi-objective 
approaches. Before that, let us look at one of the most popular optimisation 
algorithms of all times. 
 
3.0 Evolutionary algorithms 
Evolutionary algorithms (EAs) are a class of algorithms inspired by the Darwinian 
evolution theory. If evolution is the way in which nature created sophisticated beings 
like ourselves from single-celled organisms, using it to improve an engineering 
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design must be a trivial task. The concept of EAs is very simple: we start with a 
random set (population) of solutions, and then repeatedly evaluate the solutions and 
select better ones for creating new variants, until enough suitable solutions have 
been found or we have run out of time. The general processes of EAs1 are illustrated 
in Figure 1. 

 

Figure 1 – The flowchart of EA processes 

The processes start with implementing an encoding scheme for representing the 
solutions (the problem variables) in a numerical way that it can be handled by EAs. 
An encoding of a solution is called a ‘chromosome’, in which each variable is 
encoded as a ‘gene’. Typically, the initial population of solutions is randomly sampled 
across the solution space. Each solution in the population will be evaluated for its 
‘fitness’ for a given set of criteria. The ranking step works in conjunction with the 
selection procedure to ensure that the ‘fitter’ solutions will have a better chance to be 
used in making new variants. For most multi-objective and constraint handling 
methods, the ranking procedure encapsulates all the tricks. Crossover and mutation 
are nature-inspired ways for creating new solutions from existing ‘parents’. Encoding-
specific crossovers and mutation operators are often necessary for solving an 
optimisation problem efficiently. Normally, each optimisation project involves 
designing an encoding scheme, implementing solution evaluation method, selecting 
a suitable ranking scheme, and designing problem-specific crossover and mutation 
operators. 
 
There are many available frameworks and tools for EAs, for instance, ECJ2 in Java, 

                                                 
1
 There are several distinct flavours of EAs, such as Genetic Algorithm, Genetic Programming, Evolutionary 

Strategy, Evolutionary Programming, and more. In this paper we do not differentiate any particular algorithm, 

rather refer to them as a general method. Interested readers can find further information on individual algorithms 

in the literature.  
2
 ECJ, see http://cs.gmu.edu/~eclab/projects/ecj/ 
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OpenBeagle3 in C++, and the global optimisation toolbox4 in Matlab® to name just a 
few. Although it is reasonably easy to start using EAs with these tools, the first real 
hurdle a user will encounter is how to make them work with building simulation 
models. This, in fact, includes three questions: how to encode a building design 
problem in ‘genes’, how to express a new solution (in genes) as a building simulation 
model, and how to execute the simulation and collect results. jEPlus is offered to 
facilitate these three steps. 
 
4.0 Solution encoding schemes 
 
Three encoding schemes are commonly used in EAs. They are binary encoding, 
integer encoding, and real-valued encoding. Real-valued encoding not only 
represents a solution using the problem variables’ native values, continuous or 
discrete, it can also capture the relationship between variables by imposing a data 
structure (such as a tree in the case of Genetic Programming). It however requires 
more consideration in designing problem-specific crossover and mutation operators 
to work with the encoding.  
 
Integer encoding discretizes the continuous variables into finite and indexed values. 
It then represents a solution with indices of values of all problem variables. By 
discretizing continuous variables, integer encoding effectively reduces the solution 
space of the problem from infinite to finite. The disadvantage is good solutions may 
be lost due to discretization.  
 
Binary encoding also discretizes the solution space, though implicitly. Binary form of 
the values of all discrete or continuous variables are put together in a bit string (a 
string of 0s and 1s) as the representation of a solution. For example, a double-
precision value can be encoded in 64 bit (8 x 8 bytes), although more often a shorter 
encoding (e.g. 10 bit) is used to reduce the length of binary chromosomes. EAs with 
binary encoding can use a standard set of crossover and mutation operators, 
disregarding the problem it is solving.  
 
For optimisation problems in building design and operation, most problems have both 
discrete and continuous variables. However, the precision requirement for continuous 
variables in buildings is very low. Take the width of shading device for example: a 
value 1.1152m instead of either 1.1m or 1.2m does not offer much benefit due to the 
presence of engineering errors and other uncertainties. In this case, integer encoding 
with predetermined design options may speed up optimisation by reducing the size of 
solution space. It is a native encoding scheme supported by jEPlus. 
 
5.0 jEPlus project and integer chromosome 
jEPlus was originally introduced in 2009 as a parametric tool for EnergyPlus5. It 
allows users to define parameters within an EnergyPlus model, and manage 
simulations of generated parametric jobs. Parametric simulations are often used for 
investigating the effects of a selected few design options, or exploring the solution 
space of all design options. Optimisation on the other hand, offers an efficient way to 
identify (near) optimum solutions within the whole solution space. 
 

                                                 
3
 Open Beagle: see http://beagle.gel.ulaval.ca/ 

4
 Matlab Global Optimisation Toolbox: see http://www.mathworks.co.uk/products/global-optimization/ 

5
 EnergyPlus: see http://apps1.eere.energy.gov/buildings/energyplus/ 
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jEPlus stores definition of parameters of a building model, alongside the execution 
settings for EnergyPlus simulations, in a project file. The design parameters are 
organized in a tree structure, which has been described in detail in [6][7]. Figure 2 
shows an example of parameter tree. Any part of a building model can be defined as 
a parameter, as long as it can be isolated within the model and be replaced with an 
alternative block by jEPlus. Each parameter definition contains a number of 
alternative values assigned by the user. For the example in Figure 2, there are four 
alternative building models for the building form parameter, whereas there are 24 
alternative orientations for the north axis of the building. Note that the orientation of a 
building can be a continuous variable. It is discretized in the parameter definition. 
 

 

Figure 2 – jEPlus parameter tree 

All design options that a user intends to investigate can be represented in a 
parameter tree. Each candidate solution contains all parameters, each with one 
alternative value assigned to it. Therefore, each path from top to bottom of the tree in 
Figure 2 represents one solution. If we put the index of the alternative value selected 
for each parameter together, we get an integer vector that can serve as an integer 
chromosome for EAs. For instance, a candidate with building form 2, rotation 45°, 
25% of glazing with reflective coating, Fan coil system, and best practice insulation 
level can be represented as the vector (1 3 0 1 … 3 0)6. 
 
As we have discussed in section 4.0, the advantage of integer encoding is its 
efficiency. Binary encoding with fixed gene length is subject to bit redundancy, in 
which situation chromosomes may represent invalid or duplicate solutions. Real 
value encoding represents an infinite search space whenever continuous variables 
are involved. Effort has to be made to avoid GA searching in excessive resolution. 
Integer encoding, on the other hand, represents precisely the predefined solution 
space without any redundancy or duplication. In the case study in section 7, we 
provide a comparison of EAs performance between the jEPlus integer encoding and 
a binary encoding. 
 
                                                 
6
 Note that the indices are 0-based, i.e. the first element has an index 0, the second, 1, and so on. 
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6.0 Connecting EAs to jEPlus 
 

Once the encoding scheme of the optimisation problem has been decided, and the 
solution space defined within a jEPlus project, an EAs tool can then be coupled with 
jEPlus to perform optimisation. All necessary input files for running EnergyPlus 
simulations are referenced in the jEPlus project file. These include the installation 
location of EnergyPlus executables, weather files, model files, the RVI/MVI file 
(instructions for result extraction), and the directory where simulation outputs will be 
stored. A user can use jEPlus’ GUI to edit a project and test run a few simulations to 
make sure all settings are correct, before setting up optimisation. 
 
List 1 shows a Java code sample with which jEPlus is called from the solution 
evaluation procedure in EAs (see Figure 1). The process contains loading a jEPlus 
project, creating a simulation manager with attached execution agent, converting 
chromosomes7 in the current population to a jEPlus job set, running the jobs in the 
job set, and obtaining simulation results. The simulation results returned are double-
precision vectors in a map indexed by job identifiers. The double-precision arrays 
holds any numerical information the user wants to extract (with a RVI/MVI file) from 
simulation outputs. These results can then be processed at the user’s choice.  
 

 

List 1 – jEPlus programming interface example 

 

If a user’s EAs tool does not support code-level Java interoperability, it can be 

                                                 
7
 In the current version (v1.2) of jEPlus at the time when this paper is prepared, JEPlusProject class supports 

both integer and binary chromosomes that comply with the JDEAL framework. JDEAL is the Java Distributed 

Evolutionary Algorithms Library: see http://www.laseeb.org/sw/jdeal/home.html 

// … we are ready to run the simulations 

 

// load project file 

JEPlusProject Project = new JEPlusProject ( ”project_directory/project.jep”); 

 

// create simulation manager 

EPlusBatch SimManager = new EPlusBatch (null, Project); 

 

// Set simulation agent 

SimManager.setAgent(new EPlusAgentLocal ( Project.getExecSettings())); 

 

// specify jobs; currentPopulation holds all chromosomes to be evaluated 

String [][] jobs = new String [currentPopulation.getSize()][]; 

for (int i=0; i<currentPopulation.getSize(); i++) { 

jobs[i] = Project.getJobString(currentPopulation.getChromosome(i)); 

} 

 

// execute jobs – job string contains values 

SimManager.runJobSet(jobs); 

 

// wait for jobs to finish 

try { 

do { 

Thread.sleep(2000); 

}while (SimManager.isSimulationRunning()); 

}catch (InterruptedException iex) { 

SimManager.getAgent().setStopAgent(true); 

} 

 

// collect simulation results 

HashMap Results = SimManager.getSimulationResults(); 

 

// … then process results using either single or multi-objective approaches 
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coupled with jEPlus using its command-line interface. In this case, user has to define 
the integer chromosome manually according to the jEPlus project, and then call 
jEPlus using the command shown in List 2. 
 

 

List 2 - jEPlus command-line interface 

 
Text in ‘{ }’ in List 2 must be replaced with the actual jEPlus project file name and job 
strings. Different job strings are separated with ‘;’ character. A job string comprises a 
user-assigned “job ID” string for uniquely identifying the job, the index of the weather 
file, the index of the building model, and the index of each value selected for the 
corresponding parameters.  On this command, jEPlus starts simulations immediately. 
When all jobs are completed, extracted results are collected into a text file, 
‘SimResults.csv’, in the output directory specified in the project.  
 
 
7.0 Case Study 
We use an experiment to demonstrate performing optimisation using EAs coupled 
with jEPlus. Multi-objective and single objective approaches are tested on an 
optimisation problem. Also compared are binary encoding and jEPlus integer 
encoding schemes for their impact on optimisation performance. 
 
The test case used in this experiment has been introduced in [7]. Four building forms 
included in the study are two typical office building shapes (square and rectangular) 
with two floor layouts (open-plan and cellular offices) each. Other design features 
and parameters considered as optimisation variables include orientation, glazing-to-
wall ratio, glazing reflective coating, overhang size, daylight and glare control, 
selection of HVAC systems, and building fabrics. Details are listed in Table 1 below. 
In total, there are more than one million design solutions to explore. Optimisation 
objectives are to minimize annual heating and cooling demand of the building. Both 
single and multi-objective methods are tested. 
 

Java -jar jEPlus.jar -job {project.jep} -index “{job string 1; job string 2; …}“ 

 

where “job string” is: 
 

{job ID},{index of weather file},{index of building model},{index of parameter 

1}, {index of parameter 2}, …; 
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Table 1 - Design variables 

 
Table 2 shows the different EAs settings used for multi-objective and single objective 
optimisation in this case study. The NSGA-II algorithm [8] was used for multi-
objective optimisation. Each experiment is limited to 100 generations. It was repeated 
10 times. Unless otherwise stated, all results reported in this paper are average 
values from 10 separate trials. The experiments were carried out on De Montfort 
University’s computer cluster using an extended version of jEPlus. 
 

Parameter Values
Number of 

options

Building form (IDF model) Rectangular-open plan,

Rectangular-cellular offices

Squar-open plan

Squar-open plan + cellular offices

4

Orientation (North Axis - °) 0, 15, 30, 45, …, 345 24

Glazing ratio (%) 25, 50, 75 3

Glazing reflective coating ( ) Yes, No 2

Overhang depth (m) 0.2, 0.4, 0.6, …, 1.2 6

Daylight control ( ) None, 

daylight lighting control

lighting control + glare control

3

HVAC system ( ) Ideal load system

Variable air volume system

Constant air volume system

Fancoil + Fresh air system

4

Building fabrics ( ) Best practice, 

UK Building regulations 2002 Part L,

UK Building regulations 1995 Part L,

UK Building regulations 1990 Part L,

Minimal insulation

5

Window construction ( ) Best practice, 

UK Building regulations 2002 Part L,

UK Building regulations 1995 Part L,

UK Building regulations 1990 Part L,

Minimal insulation

5

Total options 1 036 800
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Table 2 - EAs settings 

 
8.0 Results and analysis 
Figure 3 shows the convergence chart of the optimisation process. Such charts are 
typically used for comparing performance of different EAs algorithms. On X-axis is 
the timeline (generation number). On Y-axis is the best objective function value found 
so far. The quicker and deeper a convergence line goes down, the better the 
performance of the algorithm. For the multi-objective trials, heating and cooling 
consumptions were separate objective functions for the optimisation process. A 
simple sum of heating and cooling consumptions is calculated and plotted on the 
chart after the trials have completed. For the single objective trials, the sum of 
heating and cooling consumptions was used as the objective function.  
 
Integer encoding showed clear advantages over binary encoding, for the reasons 
explained in section 4.0. Although single objective approach converged faster at the 
early stage (till about the 15th generation) of optimisation, it tended to converge 
prematurely on a local optimum and therefore underperform in the long run 
compared to the multi-objective approach. 
 
Premature convergence is a common problem with EAs. One of the strategies to 
tackle this is to perform several independent optimisation runs in parallel, therefore 
increase the chance of finding the global optimum. Table 3 compares the three 
methods in terms of the best solution found after certain number of simulations 
between 10 trials. The result further confirms that the single objective approach 
produces better results if the number of simulations is limited. On the other hand, 
multi-objective approach produces better results in the long run. 
 

EAs setting
Integer encoding

Multi-objective

Integer encoding

Single objective

Binary encoding

Single objective

Encoding jEPlus integer (9 genes) jEPlus integer (9 genes) Bit string (9 x 10bit)

Algorithm NSGA-II Standard GA Standard GA

Population size 20 20 20

Elistism size Pareto optimal solutions 1 1

Selection Binary tournament Binary tournament Binary tournament

Overall crossover rate 1.0 1.0 1.0

    Uniform crossover option 25% 25% 50%

    One-point crossover option 25% 25% 50%

    Arithmetic crossover opt. 50% 50% -

Overall mutation rate 0.1 0.1 0.1

    Flip mutation option 50% 50% 100%

        Gene/bit-wise mut. Rate 0.5 0.5 0.1

    Shift mutation option 50% 50% -

        Gene/bit-wise mut. Rate 0.5 0.5 -
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Figure 3 - Average convergence of objective function 

 

 

Table 3 - Best solution found in 10 parallel trials 

 

Figures 4 and 5 explain why the multi-objective approach is less prone to premature 
convergence. Figure 4 shows the distribution of final solutions from the multi-
objective approach. Only those considered Pareto optimal are plotting on the chart. It 
is clear to see these solutions were spread along the Pareto front. This helps keep 
divergence within the population; therefore, the algorithm is less likely to be trapped 
by a local optimum. In Figure 5, all solutions in the final population of the 10 trials are 
plotted. The solutions were tightly clustered around the (local) minima, which 
hindered further exploration of better solutions. 

 

1.2E+11

1.3E+11

1.4E+11

1.5E+11

1.6E+11

1.7E+11

1.8E+11

0 10 20 30 40 50 60 70 80 90 100

S
u

m
 o

f 
h

e
a

ti
n

g
 a

n
d

 c
o

o
li

n
g

 l
o

a
d

 (
J)

Generation number

Binary encoding, single objective

Integer encoding, single objective

Integer encoding, multi-objective 

Simulations

performed

Integer
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Integer
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Single objective

200 1.52994E+11 1.44950E+11 1.51717E+11

1 000 1.33839E+11 1.33839E+11 1.41224E+11

2 000 1.33839E+11 1.33650E+11 1.34115E+11

3 000 1.33839E+11 1.32730E+11 1.34115E+11

5 000 1.3365E+11 1.31919E+11 1.34115E+11

10 000 1.31411E+11 1.31411E+11 1.34115E+11

20 000 1.31336E+11 1.31411E+11 1.31461E+11
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 Figure 4 – Distribution of pareto optimal solutions in the final population of all 
multi-objective trials 

 

 

Figure 5 – Distribution of all solutions in the final population of single objective 
(integer encoding) trials 
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9.0 Conclusions 
jEPlus provides a convenient way to interface EnergyPlus models with optimisation 
algorithms. It simplifies three key tasks: encoding of a building design problem, 
mapping a design solution to a simulation model, and execution of simulation jobs. 
Users can use either the programming interface or the command-line interface to 
couple their own optimisation algorithms to jEPlus. 
 
Evolutionary Algorithms (EAs) is one of the most widely used optimisation methods in 
engineering fields. A case study of the application of EAs in building design is 
presented in the paper. We demonstrated the use of both multi-objective and single 
objective approaches on minimising heating and cooling consumptions of an office 
building. Both methods showed quick convergence of the objective function(s). The 
single objective approach, in which the simple sum of the heating and cooling 
consumptions is used as the objective function, converged quicker but was prone to 
being trapped in a local optimum. The multi-objective approach produced better 
solutions consistently in the experiments. It was also shown that the jEPlus integer 
encoding scheme has significant performance advantage over a typical binary 
encoding scheme. 
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